Расчет ковочных вальцев. Проектирование и расчет вальцового станка. Формулы, использованные в расчете


Блога два с половиной года назад была затронута тема расчета геометрии деталей, получающихся в процессе вальцовки. В этой публикации речь пойдет об определении усилий , возникающих при вальцовке листового металла. Тема интересная...

И важная не только для специалистов эксплуатирующих листогибочные вальцы, но и для всех, кто, так или иначе, связан с процессом гибки на листогибочных и обычных прессах.

Во всех расчетных формулах для определения усилия гибки листов в качестве одних из главных определяющих параметров фигурируют или предел прочности, или предел текучести металла листовой заготовки. Известно, что в процессе изгиба область, подверженная деформации, упрочняется. Но на сколько? Иногда это упрочнение учитывают повышающим предел текучести постоянным коэффициентом, как, например, в . В программе, представленной в этой статье, повышение прочности будет определено и учтено аналитически по расчетной кривой деформационного упрочнения .

В паспортах листогибочных валковых машин в последнее время обычно указывается максимальная ширина и толщина изгибаемой листовой заготовки из стали С255 и наименьший радиус вальцовки. А на практике постоянно возникает вопрос – «потянут» ли вальцы менее широкий, но более толстый лист, да еще, возможно, и из другой марки стали? Вопрос не праздный – ошибка может привести к поломке станка и дорогостоящему последующему ремонту.

Включаем MS Excel и начинаем рассмотрение решения озвученной задачи на примере вальцовки листового металла на трехвалковой листогибочной машине.

Расчет в Excel моментов и сил при вальцовке.

Задача:

Определить возможность гибки и правки обечайки диаметром 1600 мм и длиной 1500 мм из листовой стали С345 (09Г2С) толщиной 18 мм на вальцах марки И2222.

Из паспортных данных машины известно, что на ней можно изготовить обечайку минимальным диаметром 440 мм и длиной 2000 мм из листовой стали С255 (Ст3 сп5) толщиной 16 мм.

Вальцовка листового металла на трехвалковой машине с подвижным в вертикальной плоскости верхним валком показана на схеме, из которой очевидно, что наиболее нагруженным является верхний валок.

Задачу решим следующим образом:

1. Определим в расчете №1 усилие на верхнем валке при гибке и правке обечайки с предельными размерами из паспорта. То есть узнаем возможности листогибочной машины И2222.

2. В расчете №2 вычислим силы, действующие на наиболее нагруженный верхний валок при гибке и правке интересующей нас короткой трубы из стали С345.

3. Сравним значения сил и сделаем выводы.

Расчет №1:

Расчет №2:

Вывод:

Так как усилия на верхнем валке в расчете №2 немного меньше усилий из расчета в Excel №1, то следует вывод: на вальцах И2222 можно изготовить трубу из стали 09Г2С диаметром 1600 мм, длиной 1500 мм с толщиной стенки 18 мм.

Формулы, использованные в расчете:

12. ε т =[σ т ] / E +0,002

13. m = lg ([σ в ] /[σ т ] )/ lg (ε в / ε т )

14. A =[ σ в ] /(g* ε в m )=[ σ т ] /(g* ε т m )

15. n =A *2 (2,59-m ) /(E/g *(2+m ))

16. R о =R +s /2

17. r о = R о /s

18. R г = R о /(1+n *r о (1-m ) )

19. M г R г m )*g

20. α г =arcsin ((L /2)/(R г +D /2+s /2))

21. P г =2*M г /(R г *tg (α г ))

22. R пр =k ф * R г

23. M пр =(A *b *s (2+m ))/(2 (m +1) *(2+m )* R пр m )*g

24. α пр =arcsin ((L /2)/(R пр +D /2+s /2))

25. P пр =2*π *M пр /(R пр *((π- α пр )*tg (α пр )+1-1/cos (α пр )))

Заключение.

Расчет в Excel был выполнен без учета веса верхнего валка. Если учесть этот момент, возможности листогибочной машины увеличатся на 2…3%.

Механические свойства сталей в пунктах 4…7 расчета можно найти в ГОСТ 27772-88 (ε т = δ 5 ).

При правке заваренных обечаек изгибающий момент и усилие на верхнем валке возрастают из-за неправильной геометрии подогнутых краев заготовки и усиления сопротивления замкнутого контура.

Коэффициент формы обечайки k ф в пункте 11 можно определить по подсказке в примечании к ячейке D13.

Этот коэффициент зависит от способа подгибки краев заготовки:

k ф =0,75…0,85 – при вальцовке без подкладного листа с плоскими краями;

k ф =0,80…0,90 — при вальцовке без подкладного листа по радиусу;

k ф =0,85…0,95 — при вальцовке с подкладным листом:

k ф =0,95…1,00 – при гибке на прессе в штампе.

В завершении статьи определим коэффициент упрочнения, о котором упоминалось в самом начале, для каждого из рассчитанных выше вариантов.

K 1 = M г1 /(W x 1 *[σ т ] 1 )=37783899/(2000*16 2 /6*245)=1,81

K 2 = M г2 /(W x 2 *[σ т ] 2 )=42658644/(1500*18 2 /6*325)=1,62

С уменьшением радиуса гибки листа логично нарастает упрочнение. Используя параметры кривой деформационного упрочнения, можно более точно определять усилия и при V-образной гибке на листогибочных прессах.

Смею предположить, что при использовании предложенной программы вальцовка листового металла станет для вас более понятной и безопасной.

Возможно под заказ развитие программы для других схем вальцовки (трехвалковые машины с подвижными нижними валками, четырехвалковые машины, гибка конических деталей).

Прошу уважающих труд автора скачивать файл с расчетной программой после подписки на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы!

Желающие поддержать развитие блога могут это сделать, перечислив средства на любой (в зависимости от валюты) из указанных кошельков WebMoney : R 377458087550, E 254476446136, Z 246356405801.

Вальцы резинообрабатывающие. Описание общее.

Алгоритм выбора вальцев (внизу страницы).

Назначение вальцев.

Вальцы резинообрабатывающие предназначены для :

· Приготовления резиновых, силиконовых и пластических смесей открытым методом. (К закрытому методу приготовления смесей относятся закрытые резиносмесители );

· Разогрева смесей при питании экструдеров, каландров, прессов;

· Введения дополнительных ингредиентов в смеси, таких как сера, для подготовки смеси непосредственно перед процессом вулканизации;

· Очищения от примесей невулканизированной резины – это рифайнер, или рафинировочные вальцы РФ;

· Дроблении вулканизированной резины – это дробильные вальцы ДР ;

· Перетирание крупной крошки 2…5мм. в более мелкую 1,7…0,55мм.

Типы вальцев.

Вальцы выпускаются следующих типов: ПД – подогревательные (фрикция 1,27), СМ – смесительные (фрикция 1,08), СМ-ПД - смесительно-подогревательные (фрикция 1,17), РФ – рафинировочные (фрикция 2,55), ДР – дробильные (фрикция 2,55), РЗ – размалывающие (фрикция 4), ПР – промывные (фрикция 1,39), ЛБ - лабораторные(обычно фрикция 1,27).

Размеры вальцев.

Мыизготавливаем и поставляет вальцы из Китая начиная с диаметра валков d=150мм. и длины валков L =320мм.до диаметра валков d= 760мм. и длины валков L =2800мм. Поверхность валков может быть гладкая для смешения, подогрева, тонкого перетирания (измельчения) и регенерации (рафинирования) смесей, или рифлёная для дробления. С меньшим размером валков вальцы есть только в разделе Б /У вальцы .

ГОСТы и ИСО ( ISO ) на вальцы.

Для приготовления , получения технологии и сертификации резины в лабораторных условиях по мы рекомендуем использовать вальцыПД 320 160/160 с доп. опциями, если в них есть, конечно, необходимость (см.н иже). Они могут обозначаться как ЛБ, а в соответствии с требованиями ISO 2393 , оговорённых в возможно использовать вальцы СМ 350150/150 www. polgroup . ru / tex _ cm350. html .

Опции.

Для лаборатории возможно укомплектование вальцев дополнительными опциями : регулирование скорости вращения валков, укомплектовании дополнительной парой шестерён для изменения фрикции, цифровыми и стрелочными показывающими, записывающими и регистрирующими приборами потребляемой мощности, распорных усилий, величины зазора между валками, температуры валков, температуры перерабатываемого материала, времени вальцевания, возможность архивирования тех.п роцесса, возможность подключения к ПК по RS 485, или установка панели оператора с любыми заказываемыми функциями.

Стоимость и состав комплекта автоматики: показывающие и транслирующие на Панель оператора Weintek с тач-скрин 10" приборы, устанавливаемые на вальцах: потребляемой мощности, температуры двух валков, величины зазора между валками с двух сторон, времени вальцевания. Построение на экране графиков технологического процесса и потребляемой мощности от заданного времени вальцевания, при желании пуск и останов гл.д вигателя с панели, звуковой сигнал по окончании установленного времени вальцевания. Сохранения графиков в памяти с датой, временем, ФИО вальцовщика, номером мешки по порядку и номером мешки данного вальцовщика за этот день. С возможностью записи архива на флеш-носитель и просмотром архива и распечатки сохранённых графиков на любом ПК.

Цена автоматики 225.000-00 (Двести двадцать пять тысяч) рублей 00 копеек, в т.ч. НДС 18% рублей.

Регулирование фрикции на вальцах не целесообразно по трём причинам. Во-первых, потому, что фрикция определяет назначение (тип) вальцев – смесительные, подогревательные, или смесительно-подогревательные. Во-вторых, промышленные вальцы работают на одной фрикции, посему нет необходимости лаборатории выдавать нереальную технологию для производства. В третьих, уже давно научно изучено и доказано, что использование вальцев с индивидуальным приводом на каждый валок с частотным регулированием оборотов каждого валка, приводит к плавающей фрикции, что крайне плохо для технологического процесса, потому, что происходит затягивания под нагрузкой одного валка другим, нагрузка на быстроходный валок резко возрастает и эл.двигатель быстро выходит из строя - перегревается и сгорает.

Производительность вальцев, объём загрузки.

Производительность вальцев понятие относительное, поэтому в технических характеристиках этого параметранет, т.к. в зависимости от назначения вальцев, от типа резин, от мощности эл.двигателя, от времени смешения одной загрузки производительность может быть различна. Методика расчёта производительности (выписка из литературы) описана . Среднестатистические данные по загрузке материала на вальцы приведены в таблице. Для определения производительности вальцев необходимо знать время цикла смешения (обычно 8…12 минут). Умножая объём загрузки на количество циклов за 1 час и умножив затем на удельную плотность материала, получим производительность кг. /ч ас.

Вальцы СМ, ПД, ЛБ, ДР , РФ

Объем загрузки, литров(дм 3) за цикл

Истирание в среднем, кг /час

Длина валка

Диаметр

валков

Длина раб.ч асти валков

Мин.

Мах.

ПД 300 150/150

3

ПД(ЛБ) 320 160/160

320

160

290

4

ПД 350 150/150

4

ПД 450 225/225

8

ПД 600 400/400

17

ПД 630 315/31522 кВт

630

315

540

9

ПД 630 315/31530 кВт

630

315

540

12

ПД 700 300/300

15

ПД 800 315/315

18

ПД 800 550/550

32

ДР 800 550/550

ДР 800 490/610

490/610

ПД 900 360/360

24

ПД 1000 400/400

1000

29

ПД(ХК) 1200 450/450

1200

1000

50

ПД 1500 550/550

1500

550

1350

63

ПД 1500 650/650

1500

1350

75

ПД 1500 660/660

1500

650

1350

80…120

ПД 2100 660/660

2100

660

1940

109

ПД 2800 760/760

2800

2630

170

При увеличении мощности двигателя в некоторых моделях возможно увеличение объёма загрузки.

Валки и их нагрев.

Валки изготавливаются из чугуна с твёрдостью валков HRC э 46…54, или стальные с HRC э 50…55 с шероховатостью поверхности √0,63 «из под шлифовки» и имеют внутри полость для разогрева/охлаждения. Полость может быть получена методом центробежного литья (чугун), методом сварки трубы и цапф, методом периферийного сверления для улучшения теплопередачи. В полость валка может быть подан теплоноситель через краны и вращающиеся муфты в зависимости от необходимой технологической температуры валков:

· вода горячая до температуры 80°С.;

· вода холодная для охлаждения валков;

· пар до температуры 150°С.;

· масло до температуры 220°С.

· и другие теплоносители.

Вальцы в стандартной поставке не укомплектованы системой нагрева теплоносителя. Станции терморегулирования заказываются отдельно , или изготавливаются и монтируются самостоятельно на месте при отсутствии магистрального паропровода.

Для пластических масс целесообразно применять вальцы с эл.обогревом валков , трубчатые электронагреватели (ТЭН) установлены непосредственно в валках. Снятие температуры производится бесконтактным датчиком температуры с поверхности валка. Регулировка температуры каждого валка производится с помощью цифрового ПИД - регулятора. Учитывая, что охлаждение на таких вальцах отсутствует, применя ются они в основном для приготовления композиционных материалов. Использование масла в качестве теплоносителя крайне затруднительно т.к. сложно найти насос, который будет стабильно работать при таких больших температурах (обычно все останавливаются уже на 150°С.и более экономически затратное, т.к. при косвенном нагреве теплоноситель должен быть нагрет на 15°С. больше из-за потерь в трубопроводах. Вальцы с эл.обогревом не рекомендуем использовать для резиновых смесей по несколькимпричинам. Во первых имеется небольшая неравномерность нагрева поверхности валка, во-вторых более дорогие, в третьих сложность ремонта эл.нагревателей, в четвёртых - невозможность охлаждения валков.

Расчёт мощности парогенератора, или станции ерморегулирования для нагрева валков резинообрабатывающих вальцев.

Длина валков,

мм .

Диаметр валков, мм .

Изготовитель

Установленная мощность эл.нагревателей на 2-х валках

Площадь пов-ти 2-х валков, кв.см.

Мощность, Вт .

на 1 кв.см.

Расчётная мощность на два валка, кВт.

Где расположены эл.н агреватели

Скорость вращения заднего валка, мах, м /мин

Китай

3 297

1,64

5,4

внутри валков

Китай

3 297

3,03

10,0

в термостанции

Россия

3 215

2,24

7,2

внутри валков

Россия

12 463

2,24

27,9

Китай

12 463

2,24

27,9

22,68

Китай

20 347

0,98

20,0

внутри валков

20,53

1000

Китай

25 120

2,24

56,3

1200

33 912

2,24

75,9

1500

Россия

51 810

2,24

116,0

1500

Китай

51 810

2,24

116,0

1500

62 172

2,24

139,2

2100

87 041

Описание конструкции и работы вальцев (Лист 1)

Различные типы вальцев имеют в основе одинаковый принцип действия и ряд сходных узлов (сборочных единиц) и деталей. В общем вальцы (рис. 1) представляют собой машины, основными рабочими органами которой являются два полые валка(7) и (20), расположенные в горизонтальной плоскости и вращающиеся навстречу друг другу. Некоторые вальцы, используемые при регенерации резины, имеют три валка. . Валок(7) называется передним, так как он расположен с передней стороны рабочего места вальцев. Валок(20) называют задним. Рабочая поверхность валков может быть гладкой или рифленой в зависимости от назначения вальцев. Каждая из двух станин вальцев стянута сверху траверсой (поперечинами) (3) и помещается на массивной чугунной фундаментной плите(13). Фундаментная плита с нижней стороны имеет ребра жесткости. У вальцев с групповым приводом на фундаментной плите под каждой из станин устанавливаются трансмиссионные подшипники.

В четырех углах фундаментной плиты расположены выступающие тумбы для установки и крепления станин вальцев. Крепление станин(12) вальцев к фундаментной плите производится при помощи болтов и специальных клиньев. Высота поверхности рабочего пола обычно находится на уровне верхней части тумб фундаментной плиты. Для регулировки параллельности установки двух станин и увеличения жесткости конструкции вальцев имеется два стяжных болта. Станины()12 и поперечины (траверсы) (3) вальцев отливаются из чугуна и должны иметь 5--6-кратный запас прочности против наибольших усилий, развиваемых при работе. В каждой станине вальцев устанавливается по два валковых підшипника(2) (один от переднего, а другой от заднего валков). Подшипники заднего валка(20) неподвижно прикрепляются к соответствующей станине при помощи болтов. Подшипники переднего валка(7) установлены так, что их можно передвигать по станине для регулировки величины зазора между валками. Корпусы валковых подшипников скольжения для улучшения условий работы имеют специальные полости для охлаждения.

Рис. 1

1 -- передний валок; 2 -- задний валок; 3 -- ограничительные стрелки; 4 -- приводная шестерня; 5, 17 -- верхние траверсы; 6 -- указатель величины зазора между валками; 7 -- механизм регулировки зазора; 8, 12 -- станины вальцев; 9, 14 -- подшипники трансмиссионного вала; 10 -- соединительные болты; 11 -- фундаментная плита; 13 -- окна для заворачивания фундаментных болтов; 15 -- трансмиссионный вал; 16 -- передаточные (фрикционные) шестерни; 18 -- колпачковая масленка; 19 -- конечный (аварийный) выключатель; 20 -- штанга аварийного выключателя.

Регулировка величины зазора между валками производится при помощи специальных механизмов(14), снабженных предохранительными устройствами. На каждой из станин имеются указатели величины зазора для устранения перекоса валков. Валки изготавливаются полыми из специального высококачественного чугуна с закаленной поверхностью рабочей части и расточкой внутренней поверхности, на которую подается охлаждающая вода (при помощи специальной системы охлаждения). Для предотвращения возможности попадания перерабатываемого материала в валковые подшипники на вальцах устанавливаются защитные раздвижные щитки-стрелки одна половина которых крепится к переднему, а другая к заднему подшипникам валков.

Специальная конструкция стрелок(4) обеспечивает достаточную надежность в работе. Для смазки поверхностей трущихся пар вальцы снабжены специальной системой с рядом смазывающих устройств. На поперечинах станин вальцев смонтированы устройства(5) для аварийного останова. Станины и траверсы, воспринимающие распорные усилия при работе вальцев, отлиты из стали. Перемещение передних подшипников осуществляется при помощи двух механизмов регулировки зазора(14). Механизм регулировки зазора (рис. 2) расположен на станине со стороны переднего валка. Нажимной винт 1 вращается в стальной гайке 12, закрепленной в станине вальцев.

На конце нажимного винта 1 смонтировано предохранительное устройство, которое состоит из предохранительной шайбы 9, крышки 11, матрицы 8, пуансона 10 и корпуса 7, закрепленного болтами на корпусе подшипника 6 валка вальцев.

Рис. 2.

1 -- нажимной винт; 2 -- червячный редуктор; 3 -- эластичная муфта; 4 -- электродвигатель; 5 -- указатель величины зазора; 6 -- корпус подшипника валка; 7 -- корпус предохранительного устройства; 8 -- матрица; 9 -- предохранительная шайба; 10 -- пуансон; 11 -- крышка; 12 -- гайка нажимного винта; 13 -- станина вальцев; 14 -- маховичок ручной доводки.

Предохранительное устройство служит для предохранения от разрушения валков и станины при значительном увеличении распорных усилий между валками вальцев. В случае перегрузок (попадание в зазор металлических предметов и др.) предохранительные шайбы, рассчитанные на определенное усилие, срезаются, передний валок перемещается, увеличивая зазор между валками, и вальцы автоматически останавливаются. Чтобы предохранительное устройство работало надежно, необходимо правильно рассчитать предохранительную шайбу. Механизм регулировки зазора имеет также маховичок 14 для ручного привода на случай выхода из строя электродвигателя. Зазор между валками вальцев можно регулировать в пр еделах от 0 до 10 мм.

Для обеспечения безопасности работы на вальцах имеется механизм аварийного останова(5). Он состоит из четырех стоек, между каждыми двумя из которых имеются тросики или штанги, параллельные осям валков вальцев. Один конец каждого тросика закреплен неподвижно, а второй соединен с конечным выключателем. При нажатии на тросик (штангу) происходит отключение электродвигателя, торможение и автоматический останов вальцев. Торможение индивидуальных и сдвоенных вальцев производится при помощи колодочного или ленточного тормоза, торможение вальцев с групповыми приводами -- при помощи специальной системы аварийного останова.

Системы аварийного останова вальцев должны обеспечивать возможно быстрое прекращение вращения валков и вывод посторонних предметов из области деформации путем включения обратного хода. Аварийные выключатели должны быть устроены так, чтобы их можно было привести в действие в любой момент с рабочего места как с передней, так и с задней стороны вальцев. Такие системы обычно состоят из штанг, конечных выключателей, переключателей, тормозных, блокирующих и других устройств. Каждая система аварийного останова вальцев должна иметь устройства, позволяющие выключить приводной электродвигатель(15) и затормозить машину (электромеханическое или электродинамическое торможение). При электромеханическом торможении после нажатия на штангу, рабочий отключает электродвигатель(15) привода машины и одновременно включает механический тормоз(16) для остановки вращающихся по инерции частей привода. Электродинамическое торможение предусматривает переключение цепи приводного электродвигателя и создание в его якоре противоположно направленного электродинамического момента.

В соответствии с ГОСТ 14333--79 расстояние от уровня пола до оси штанги аварийного устройства всех современных производственных вальцев должно быть в пределах 900--1200 мм. Кратчайшее расстояние от штанги аварийного устройства до образующей валка должно быть в пределах 300--500 мм. Путь торможения валков после аварийного останова незагруженных вальцев не должен превышать 0,25 оборота валка при максимальной скорости. После аварийного останова вальцев, имеющих электромеханический привод, механизм регулирования зазора должен осуществить автоматическую раздвижку валков не менее чем на 25 мм со скоростью не ниже рабочей скорости регулирования зазора.

На рис.3 представлен современный аварийный выключатель(5) вальцев. Штанга закреплена в шарнирах-подшипниках и расположена перед передним, а иногда перед задним валком. При нажатии на штангу рожки отжимают пружину и давят на рычаги путевых малогабаритных переключателей типа ВКП-711. Рабочий ход кнопки переключателя ВКП-711 равен 2,2--2,5 мм при усилии нажатия на штангу более 2,5 Н (0,25 кгс). Величину усилия, необходимого для остановки вальцев, можно регулировать при помощи пружин. Тормозные устройства систем аварийного останова вальцев служат для поглощения кинетической энергии движущихся частей машины в период ее остановки. В валковых машинах применяются двухколодочные и ленточные тормоза.

Надежность работы механизма аварийного останова оценивается величиной поворота валков после отключения электродвигателя при незагруженных вальцах. При загруженных резиновой смесью вальцах поворот валков после отключения электродвигателя практически должен быть равен нулю. Максимальный путь пробега переднего валка по периметру бочки валка при незагруженных вальцах должен быть не более 0.25 оборота валка.

Рис. 3.

Валки и валковые подшипники скольжения охлаждаются проточной водой. В полости валков смонтировано охлаждающее устройство, состоящее из трубы с отверстиями (направленными в сторону зазора между валками), воронки(10) и ванны(11). Вода, подаваемая в трубу под давлением, вытекает через отверстия, орошает внутреннюю полость валка и сливается через открытый конец валка и воронку в ванну. Смазка валковых подшипников скольжения -- жидкая централизованная или индивидуальная -- осуществляется при помощи масляного насоса (лубрикатора). Смазка подшипников качения -- густая -- подается к подшипникам при помощи масляной станции. Смазка приводных и фрикционных шестерен, а также червячных пар осуществляется погружением нижней части колес в масляную ванну, расположенную под ними. Вальцы снабжаются приборами управления электродвигателем и автоматическими устройствами, которые для индивидуальных и сдвоенных вальцев устанавливаются в специальном шкафу, а для вальцев с групповым приводом -- на щите управления.

Обработка резиновых смесей на вальцах является достаточно энергоемким процессом. Энергия, потребляемая электродвигателем вальцев, расходуется на преодоление напряжений сдвига сопротивления в элементах передач и подшипниках и на преодоление сил сопротивления деформированию обрабатываемого материала (вязкое течение, упругая и высокоэластическая составляющие деформации).

вальцы резиновый полимерный сырье


Рис. 4.

1 -- корпус валка; 2 -- труба с отверстиями; 3 -- направляющий диск; 4 -- сливна.я воронка; 5 -- распределительная втулка; 6 -- гайка; 7 -- сальник; 8 -- направляющая втулка; 9 -- заглушка. где W-- расход воды; с2 -- удельная массовая теплоемкость воды; txи t2 -- температура воды на входе и выходе; К -- коэффициент теплопередачи; А^ср -- средняя разность температру.

Для предотвращения возможности возрастания температуры обрабатываемого материала выше допустимого значения и отвода избыточного количества теплоты на вальцах предусмотрена система водяного охлаждения. Охлаждению подвергаются валки вальцев. В старых конструкциях вальцев охлаждению водой подвергались также корпусы подшипников скольжения. В зависимости от способа отвода охлаждающей воды из полости валков вальцев различают два способа охлаждения: открытый (рис. 4, а) и закрытый (рис. 4,6). При открытом способе охлаждения валков вальцев (рис. 4, а) вода под давлением поступает во внутреннюю полость валка по трубе 2. По длине трубы 2 имеются отверстия диаметром 2--5 мм, направленные в сторону области деформации вальцев; шаг между отверстиями 100--125 мм. Иногда в отверстия трубы вворачиваются на резьбе специальные насадки -- сопла для направления и разбрызгивания струи воды.

Охлаждающая вода подается из отверстий неподвижной трубы на верхнюю часть внутренней поверхности полосы вращающегося валка и стекает по его стенке. В нижней части полости валка собирается некоторое количество воды до определенного уровня. Далее вода через отверстие в направляю щем диске 3 сливается через воронку 4 в специальный сборник и затем в канализацию. Неподвижная внутренняя труба не вращается и соединяется с водопроводом при помощи резинового шланга (для переднего валка), допускающего некоторое перемещение валка при изменении величины зазора.

Закрытый способ охлаждения валков вальцев (рис. 4, б) заключается в том, что охлаждающая вода поступает по трубе 2 (с отверстиями) в полость валка и заполняет ее полностью. Из полости валка вода при помощи специального устройства отводится в канализацию или в оборотную систему водоснабжения. При открытом способе отвода охлаждающей воды обеспечивается более интенсивное охлаждение за счет увеличенной скорости движения воды по поверхности теплообмена; система охлаждения валков с закрытым сливом более сложна по конструкции и в эксплуатации. Поэтому наибольшее распространение получила система охлаждения вальцев с открытым сливом.

Конструкции основных деталей узлов и механизмов

Валки являются основными рабочими деталями вальцов и каландров. Среднюю часть валка, соприкасающуюся с перерабатываемым материалом, называют бочкой (рис. 5). По обе стороны от бочки расположены шейки (цапфы) валка, которыми он опирается на подшипники. Концевые части валка имеют шлицевые или шпоночные канавки. Бочки валков выполняют гладкими или рифлеными, в зависимости от назначения машины. Бочка валков, кроме того, может быть цилиндрической или бочкообразной (бомбировка) для компенсации прогиба ее от распорных усилий, возникающих при вальцевании или каландрировании. Бомбировка удорожает изготовление валков, поэтому для компенсации прогиба лучше применять перекрещивание валков. Для подачи теплоносителя валок выполняют полым или с каналами, что улучшает условия теплообмена. Периферические каналы равномерно располагаются по окружности, на расстоянии 25--40 мм от поверхности валка (диаметр каналов -- 30--40 мм).

Основными параметрами, характеризующими размеры валков и машину в целом, являются номинальный диаметр бочки валка и ее длина. Из условий обеспечения необходимой жесткости длину бочки валка принимают не более 2,5--4,0 D (D --диаметр валка), а диаметр шейки--0,5 D (в случае применения подшипников качения эту величину уменьшают). При конструировании валков необходимо учитывать, что их размеры нормализованы.


Рис.5.

а -- валок вальцев передний; б -- валок вальцев задний;

Теплоноситель поступает внутрь трубы (21) и вытекает в полость валка по правую сторону от уплотнительного поршня (25), который разделяет внутреннюю часть валка на две полости. Попав в правую полость, теплоноситель, поступает по наклонным каналам, просверленным в корпусе (26) валка; каждый канал соединен с горизонтальным каналом охлаждения(28), проходящим на глубине 50 мм от наружной поверхности бочки. Пройдя по этим каналам, теплоноситель входит в левые наклонные каналы и через левую полость охлаждения направляется на слив. С торца бочки валка каналы (наклонные и горизонтальные) закрыты кольцом, под которым проложена паронитовая прокладка.

Условия работы подшипников вальцов и каландров весьма тяжелые. В некоторых машинах нагрузка на подшипник достигает 60 тс. В валковых машинах применяют подшипники качения и скольжения (последние -- при больших нагрузках, а также в прецизионных каландрах, например, при производстве тонких пленок).

На (рис.6) показан подшипниковый узел. Радиальные сферические роликоподшипники 9 установлены на конических цапфах валка. Левый подшипник закреплен жестко, правый -- может смешаться по оси при температурных деформациях. Система смазки подшипников централизованная. Масло подается в верхнюю часть корпуса 8, стекает и отводится из нижней части корпуса. Левый подшипник регулируется при помощи крышки 7, установочных колец 4, прокладок 5 и фланца 6, который через лабиринтное кольцо 3, воздействует на внутреннее кольцо подшипника. Правый подшипник фиксируется гайкой 1, поджимающей лабиринтное кольцо. Гайка 1 вращается на резьбовых полукольцах 2 и фиксируется винтом.


Рис. 6.

В случае особенно тяжелых условий работы (при больших распорных усилиях) возможно применение многорядных радиально-упорных роликоподшипников.

Станины валковых машин воспринимают статические и динамические нагрузки, возникающие при работе, обеспечивают неизменность относительного положения смонтированных на них узлов и деталей, снижают (гасят) амплитуды колебаний, передают нагрузки на опорные плиты или фундаменты. Обычно станина -- самый тяжелый узел машины.

При конструировании станин особое внимание необходимо уделять ее прочности и износостойкости. Изнашиваемые части станин (например, направляющие) желательно изготовлять в виде сменных, легко заменяемых деталей.

Масса станин вальцов и каландров достигает соответственно 20 и 50 т. Поэтому при конструировании станин нужно учитывать условия транспортирования и монтажа машин. В ряде случаев необходимо проектировать тяжелые станины составными. Наиболее надежным методом является соединение частей станины на фундаментной плите, увеличивающей жесткость системы и равномерно распределяющей силу тяжести машины на опорной поверхности фундамента. При изготовлении литых стальных или чугунных станин особое внимание следует уделять снятию остаточных напряжений, возникающих в местах, где имеются приливы, фланцы, выступы и т. д. Эти элементы желательно проектировать съемными, с креплениями на болтах. Отверстия в станине нежелательно выполнять с резьбой (в чугуне резьба часто выкрашивается). Лучше устанавливать на прессовой посадке сменные стальные втулки с внутренней резьбой.

Станины вальцов бывают обычно двух типов -- закрытые и открытые. В первом случае это цельная чугунная отливка. Основной недостаток таких станин -- необходимость полного демонтажа вальцов в случае поломки верхней траверсы, воспринимающей большие усилия. Поэтому лучше устанавливать открытые станины. Они состоят из двух частей: основания и верхней траверсы, скрепляемых болтами. В современных каландрах обычно применяют цельные станины закрытого типа с боковыми проемами, ширина которых на 50--80 мм превышает максимальный диаметр валка. Это позволяет вынимать и заводить валки через окна без применения дополнительных монтажных устройств. Для увеличения жесткости конструкции и поддержания параллельности осевых плоскостей станины связывают снизу фундаментной плитой, а сверху -- специальной траверсой, расположенной параллельно осям валков. В отдельных случаях применяют стальные тяги или распорные трубы.

Ограничительные стрелы определяют объем рабочего пространства валков между подшипниками, препятствуют «расползанию» обрабатываемой массы и таким образом предохраняют от нее подшипники. Ограничительные стрелы представляют собой металлические перегородки, укрепляемые неподвижно или перемещаемые вдоль образующей валков. Каждая стрела состоит из двух половин, которые тщательно подгоняют к поверхности валка. На (рис.7) показаны передвижные ограничительные стрелы, устанавливаемые на вальцах. На корпусах подшипников валков подшипники 1 закреплены болтами 2. Через отверстия в подшипниках проходят валик 3, неподвижно закрепленный болтами 4 в подшипниках 1, и валик 5, установленный в дистанционных кольцах 6. Кольца позволяют валику 5 вращаться в подшипниках. На валиках установлены подвески 7 для стрел: на валике 3 по скользящей посадке, а на валике 5 с помощью резьбовой втулки 8.


Рис. 7.

При вращении маховичка 9, посаженного неподвижно на валик 5, подвески 7 могут перемещаться к центру или от центра, сокращая или увеличивая Площадь рабочей поверхности валка. На подвесках закреплены стрелы 10, на концах стальных стрел установлены скребки 11 из латуни. Вследствие износа между поверхностью валка и торцом стрелы образуется зазор. Этого недостатка лишены стрелы с пружиной, устанавливаемой между основанием стрелы и самой стрелой; стрелы прижимаются к валку при помощи пневмоцилиндров с усилием 100--250 кгс.

Пластинчатые или дисковые ножи устанавливают в державках, которые укреплены на поддоне или кронштейнах, а иногда непосредственно на станинах валковых машин. Регулирующими винтами или пружинами ножи прижимаются вплотную к поверхности валка или съемного валика. Ножи срезают массу пластического материала в виде полос заданной ширины, отрезают кромки при изготовлении пластмассового листа, пленки, различных типов линолеума и т. д. В зависимости от количества ножей и их взаимного расположения с валковой машины срезается одна или несколько полос материала заданной толщины.

Вальцы могут иметь индивидуальный и групповой приводы. В первом случае от электродвигателя вращение на вальцы передается через цилиндрический или цилиндро-конический редуктор. Для сдвоенных вальцов также можно применять цилиндро-конический редуктор. Для вальцов группового исполнения (2, 3, 4 и более) применяют привод с использованием асинхронных или синхронных (тихоходных) электродвигателей. В этом случае выходной вал общего редуктора передает вращение сразу на несколько вальцов, которые имеют индивидуальные цилиндрические зубчатые пары.

В новых конструкциях вальцов применяют приводы с блок-редукторами и шарнирными шпинделями (по типу приводов каландров). Использование подобных приводов позволяет разгрузить валки и станины от изгибающих моментов, возникающих при передаче крутящего момента зубчатыми колесами. Применение шарнирных шпинделей упрощает системы регулирования зазора валков (не требуется изготовление цилиндрических колес с корригированными зубьями).

Блок-редукторы для вальцов выполняют с двумя выходными тихоходными валами (типа БВ).

60-У р

Где V - объем единовременной загрузки, м3; р - плотность резиновой смеси, кг/м3; тц - продолжительность цикла обработки материала, мин. Производительность вальцев непрерывного действия, а также каландров:

G= 60-п^-п-Ь^-р, - к-

Где D - диаметр валка, м; п - частота вращения валка, об/мин;

Ь - ширина выходящей ленты, м; h - толщина выходящей ленты, м; р - плотность перерабатываемого материала, кг/м3.

Расчет распорных усилий.

Расчет распорных усилий вальцев по методике, основанной на гидродинамической теории вальцевания.

Где Т1 и Т2 - коэффициенты, зависящие от А и f (см. таблицу 2. 6). Таблица 2. 6. Зависимость Т1 и Т2 от А и f

3 к а V", (1+/)-Я

2 (I + 2) _ д

(аг^ V 1_ 1 +agctg V д1_1) _ -2

(аг^ V 1_1 + agctg 4 д1_ 1) _ 2

Где V: - окружная скорость медленного валка, м/с; 81 - коэффициент зависящий от А (см. таблицу 2. 2). Мощность

V 112 Я

Где R - радиус валка, м.

Методика, основанная на теории подобия.

Определяется зависимость потребляемой вальцами энергии от основных факторов:

N = ^ у, w, ^ D, Ц О, (1)

N = £г(М, у, w, h, D, Ц О, (2)

Где R - восстанавливаемость каучуков; у - плотность каучуков; w - угловая скорость валка; h - зазор между валками;

D - диаметр валка;

Ц - длина валка;

£■ фрикция;

Эти уравнения применимы для машины, на которой проводились эксперименты. Для при­менения к другим машинам вводится симплекс D1 /О, учитывающий различия диаметров исследуемой и проектируемой машин. При решении уравнений 3 и 4 относительно N имеем:

Существуют критериальные уравнения для смесей на основе бутадиеннитрильных и бутади - енстирольных каучуков.

2.2.1 Назначение и классификация

Каландры в резиновой промышленности применяются для изготовления тонких листовых за­готовок из резиновых смесей, обрезинивания кордов, промазки технических тканей, нанесения ри­сунка и профилирования заготовок.

В зависимости от вида выполняемой работы каландры подразделяются на следующие типы:

A) Листовальные - для выпуска тонких листовых заготовок из резиновых смесей. Изготавли­ваются трех и четырехвалковые. Валки, как правило, имеют одинаковую окружную ско­рость вращения.

B) Промазочные - для промазки или втирания резиновой смеси в ткань. Скорость вращения среднего валка в 1,2^1,5 раза выше, чем у верхнего и нижнего валков. Промазочные ка­ландры бывают обычно трехвалковыми.

C) Универсальные каландры применяются, когда необходимо на одной машине осуще­ствлять листование резиновых смесей и промазку тканей. Могут иметь 3 или 4 валка.

D) Дублировочные каландры - имеют два валка, вращающихся с одинаковой скоростью. Ис­пользуются для получения многослойных заготовок. Дублирование может осуществлять­ся и на трехвалковом каландре, снабженном специальным дублировочным роликом.

E) Профильные - обычно имеют четыре валка, из которых выносной является профильным (имеет рисунок). Используются для создания рисунка или выпуска профильной резиновой ленты.

^ Лабораторные каландры - предназначены для проведения лабораторных исследований.

Имеют 3 или 4 валка.

Каландры могут классифицироваться по расположению осей валков: Г (Ь) - образным, S - образным, Z - образным, вертикальным, треугольным, угловым и другим расположением валков (см. рис. 2. 11).

По характеристике давления валков и изменению зазора каландры делятся:

С постоянным зазором, при этом давление в зазоре величина переменная;

С переменным зазором, при этом давление в зазоре величина постоянная.

В первом случае положение осей валков может меняться принудительно только при помощи системы регулировки величины зазора. В процессе выполнения одной операции величина зазора постоянна.

Во втором случае в паре двух валков ось одного неподвижна, а ось второго перемещается за счет использования подвижных подшипников. По этой причине зазор изменяется, а давление оста­ется постоянным.

Цель работы: приобретение практических навыков расчёта и проектирования вальцового станка.

Задание: определить основные параметры рабочих органов вальцового станка, установленного в системе для измельчения пшеницы, производительностью Q , кг/ч.

Из приложения 1 определяем геометрические размеры зерен пшеницы. Диаметр частицы составляет d , мм. Межвальцовый зазор b , мм выбираем из задания.

Производительность станка, степень измельчения и расход энергии взаимосвязаны и определяются отношением окружных скоростей вальцов, диаметром и правильностью геометрической формы вальцов, профилем и характеристикой рифлей. Увеличение окружных скоростей вальцов существенно повышает производительность при незначительном увеличении расхода энергии.

Диаметр вальца определяют из условия затягивания частицы материала в зазор между вальцами. Частица (рис.3.1), находящаяся между гладкими вальцами, вращающимися с одинаковыми угловыми скоростями, будет увлекаться силами трения F в зазор (диаметры вальцов одинаковые). Однако войти в зазор, не деформировавшись, частица не может. Оказывая сопротивление, частица воспринимает со стороны вальцов нормальные усилия P .

Если при этом разность вертикальных составляющих будет направлена к зазору (вниз), то частица, разрушаясь, попадает в зазор, если эта разность направлена от зазора (вверх), то вальцы не смогут захватить частицу и увлечь ее в зазор.

Рис.3.1 – Схема к определению диаметра вальца

Определяем минимальный диаметр вальцов D min , мм из условия захвата частицы вальцами из формулы:

(3.1)

где α – угол острия (α =20…30°).

Применяемый на практике минимальный диаметр вальцов равен 150 мм, а наиболее широко распространенный – 250 мм, что вызвано требованиями высокой жесткости вальцов.

Вальцовый станок имеет две пары вальцов, следовательно, одна пара вальцов имеет производительность Q B = Q /2.

Длину вальцов L р, м ориентировочно определяем по формуле (3.2), при этом удельную нагрузку для первой драной системы определяем по приложению 2, q , кг/(м ч). Отсюда:



По приложению 2 выбираем вальцы с параметрами: количество рифлей на 1 см; уклон рифлей, %.

Проверяем правильность расчета рабочей длины вальцов L р, м из формулы (3.5), предварительно определив скорость обработки зерна V з, м/с по формуле (3.4), при этом принимаем скорость быстровращающегося вальца V б, м/с. В настоящее время при размоле зерна в сортовую муку принимают V б =5,5...6,5 м/с, при размоле зерна в обойную муку V б = 8...12 м/с. В первом случае соотношение скоростей выбирают: для драных систем К = 2,5 и для размольных систем К = 1,1...1,6 (Приложение 1).

Тогда V м, м/c равно:

V м = V б /K (3.3)

(3.4)

(3.5)

где b – зазор между вальцами, м;

Q B – производительность станка, кг/ч;

ρ – объемная масса измельчаемого продукта, кг/м 3 ;

V З – скорость обработки зерна в зазоре между вальцами, м/с;

k 1 – коэффициент полезного использования зоны измельчения, который всегда меньше единицы (k 1 =0,2...0,3).

Определяем величину рабочего прогиба по формуле (3.7).

Предварительно определяем момент инерции сечения вальца J , м 4 по формуле (3.6):

где D – диаметр вальца, м.

Отсюда прогиб y , м равен:

1 = 3000 кгс/м;

L – расстояние между опорами, м; L = L p + 2 ΔL ;

ΔL – расстояние от торца вальца до середины подшипникового узла, ΔL = 0,06м;

Е – модуль упругости материала вальца, Е = 1,6 10 10 кгс/м 2 ;

J – момент инерции сечения вальцов, м

Проверяем условие y < [y ] = 1·10 -5 м

Частоту вращения вальцов n (с -1) определяем по формуле:

где V б – скорость быстровращающегося вальца, м/с;

D – диаметр вальца, м.

Мощность, потребную для привода одной пары вальцов
N (кВт) определяем по формуле:

(3.9)

где L р – рабочая длина вальцов, м;

D – диаметр вальца, м;

n

d – диаметр частицы исходного материала, м.

Для обеспечения вращения быстровращающегося вальца с частотой n , мин -1 разработаем кинематическую схему привода. Кинематическая схема представлена на рис. 3.2.

Для разработки кинематической схемы привода вальцов необходимо рассчитать общее передаточное число, которое определяем по формуле:

Для рассчитанного передаточного отношения достаточно установить ременную передачу, которая обеспечит точную частоту вращения ротора.

Общий коэффициент полезного действия является произведением всех КПД передач привода и определяется по формуле:

Ременная передача рассчитывается по стандартной методике.

ƞ рп. – КПД ременной передачи, ƞ рп = 0,95;

ƞ зп – КПД зубчатой передачи, ƞ зп = 0,95.

Установленную мощность привода N np (кВт) определяем по формуле:

По приложению 3 для привода шнека выбираем электродвигатель с N эд, кВт, n эд =1500 мин -1 . Циркуляционную мощность N ц, кВт определяем по формуле:

(3.13)

Крутящий момент на валу вальцов М к (Н м) определяем по формуле:

где n – частота вращения вальцов, с -1 ;

Силы Т и R (H) определяются из технологического расчета по формулам:

, (3.15)

, (3.16)

где q – равномерно распределенная нагрузка в межвальцовом зазоре (при измельчении q = 3·10 4 Н/м, при плющении
q =2,5·10 5 Н/м);

L p – рабочая длина вальцов, м;

β – угол наклона оси вальцов, β =45º.

Рис. 3.2. Кинематическая схема привода вальцовой пары:

1- быстровращающийся валок; 2 - медленновращающийся валок;
3 - первая зубчатая передача; 4 - вторая ременная передача;
5- первая ременная передача; 6 - электродвигатель; 7 - распределительный валок; 8 - дозировочный валок; 9 - вторая зубчатая передача

Вальцовые устройства снабжают механизмами питания и очистки поверхности вальцов. Механизм питания должен обеспечивать регулируемую равномерную по всей длине вальца подачу заданного количества продукта. В настоящее время чаще всего применяют двухвалковый питающий механизм (рис.3.3), верхний питающий валик называют дозировочным, а нижний – распределительным. Дозировочный валик имеет продольные рифли, а распределительный валик имеет поперечные рифли.

Механизм питания должен подавать продукт в зону измельчения со скоростью, равной или близкой к скорости медленновращающегося вальца.

Диаметром питающего валка D п = 2r задаемся конструктивно, D п = 80 мм.

Рис.3.3. Питающий механизм вальцового станка:

1 – быстровращающийся валок; 2 – медленновращающийся валок;

3 – распределительный валок; 4 – дозировочный валок.

М – точка отрыва частицы от распределительного валка; А – расстояние, отделяющее точку отрыва частицы от горизонтального диаметра валка; В – высота падения частицы; r – радиус распределительного валка;
b – точка касания частицы медленновращающегося валка; Q – сила тяжести частицы

Максимальную окружную скорость распределительного питающего валка V рв, м/с определяем по формуле (3.17), при этом А = r , где А – расстояние от точки падения частицы до оси вращения распределительного валка.

Высоту падения частицы В (м) определяем из формулы (3.18), зная конечную скорость падения частицы V k = V м.

(3.18)

Частоту вращения питающего валка n рв, мин -1 определяем по формуле:

(3.19)

Вращение питающего валка производится через ременную передачу от быстровращающегося вальца, а вращение дозировочного валка производится от питающего через зубчатую передачу в том же направлении со скоростью 1,5…2 раза меньше, чем скорость питающего валка. Отсюда скорость дозировочного валка n доз.в. , мин -1 составляет:

где n рв – частота вращения питающего валка, мин -1 .

Частоту вращения быстровращающегося валка n бв, мин -1 определяем по формуле:

Порядок оформления отчета. Отчет о расчетно-практической работе оформляется в соответствии с требованиями, изложенными в , и включает в себя следующие разделы:

– цель работы;

– расчетную часть, в которой приводится расчет вальцового станка согласно предлагаемому варианту (прил. 1);

– графическую часть, в которой даются чертеж схемы определения диаметра вальца и кинематическая схема вальцового станка с указанием рассчитанных параметров передач.

Приложение 1

Таблица 3.1– Исходные данные для расчета вальцовых устройств

Номер варианта Производи­тельность Q , кг/ч Система Окружная скорость быстровращающегося вальца V б, м/с Коэффициент соотношения скоростей, К Диаметр частицы d , мм Межвальцовый зазор b , мм
1 -я размольная 6,5 1,5
2-я шлифовочная 6,5 2,5 1,5
10-я размольная 5,5 1,5
2-я сходовая 5,5 1,6 1,5
VI драная 6,5 2,5
III драная 6,5 2,5 2,5
V драная 6,5 2,5
6-я размольная 6,5 1,1 2,5
1-я сходовая 2,5
I драная 6,5 2,5 1,5
9-я размольная 2,5 1,5
II драная крупная 6,5 2,5
V драная 6,5 1,5
10-я размольная 5,5 1,8 2,5
2-я сходовая 5,5 1,4 2,5

Приложение 2

Таблица 3.2– Некоторые параметры вальцовых станков

Системы Удельная потребная мощность, кВт/см Количество рифлей на 1 см длины окружности вальцов Уклон рифлей. %
I драная 800-1200 0.185-1.200 3.5-4.5 4-6
II драная крупная 600-900 0.225-0.240 4.0-5.5 4-6
II драная мелкая 600-900 0.135-0.155 4.0-5.5 4-6
III драная 400-600 0.205-0.225 5.0-6.5 4-6
IV драная крупная 250-300 0.175-0.210 5.5-6.5 6-8
IV драная мелкая 300-400 0.145-0.160 5.5-6.5 6-8
V драная 200-300 0,140-0,155 6.5-8.0 7-8
VI драная 120-150 0.115-0.125 7.5-8.5 7-8
VII драная - 0.135-0.155 7.5-8.5 8-9
1-я шлифовочная 300-400 0.070-0.080 9.0 6-8
2-я шлифовочная 300-350 0.070-0.080 9.0 6-8
3-я шлифовочная 300-350 0.080-0.085 9.5 6-8
4-я шлифовочная 200-300 0.080-0.095 10.0 6-8
5 и 6-я шлифовочные - 0.080-0.095 9.5-10.0 7-10
Вымольные - 0.080-0.090 10.0 8-10
1.2.3.4 и 5-я размольные 180-300 0,105-0,115 10-11 6-8
6.7 и 8-я размольные 125-200 0.105-0.115 10-11 8-10
9 и 10-я размольные 125-150 0.105-0.115 10-11 8-10
1-я сходовая 180-250 0.100-0.110 8-10
2-я сходовая 140-200 0.100-0.110 8-10