Предельное давление газовой сварки и их выбор. Определение параметров режима газовой сварки. Материалы для выполнения сварки с использованием газа


Газовая сварка относится к сварке плавлением. Процесс газовой сварки состоит в нагревании кромок деталей в месте их соединения до расплавленного состояния пламенем сварочной горелки. Для нагревания и расплавления металла используется высокотемпературное пламя, получаемое при сжигании горючего газа в смеси с технически чистым кислородом. Зазор между кромками заполняется расплавленным металлом присадочной проволоки.
Газовая сварка обладает следующими преимуществами: способ сварки сравнительно прост, не требует сложного и дорогого оборудования, а также источника электроэнергии. Изменяя тепловую мощность пламени и его положение относительно места сварки, сварщик может в широких пределах регулировать скорость нагрева и охлаждения свариваемого металла.
К недостаткам газовой сварки относятся меньшая скорость нагрева металла и большая зона теплового воздействия на металл, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, а коробление свариваемых деталей больше, чем при дуговой сварке. Однако при правильно выбранной мощности пламени, умелом регулировании его состава, надлежащей марке присадочного металла и соответствующей квалификации сварщика газовая сварка обеспечивает получение высококачественных сварных соединений.
Благодаря сравнительно медленному нагреву металла пламенем и относительно невысокой концентрации тепла при нагреве производительность процесса газовой сварки существенно снижается с увеличением толщины свариваемого металла. Например, при толщине стали 1мм, скорость газовой сварки составляет около 10м/ч, а при толщине 10мм – только 2м/ч. Поэтому газовая сварка стали толщиной свыше 6мм менее производительна по сравнению с дуговой сваркой и применяется значительно реже.
Стоимость горючего газа (ацетилена) и кислорода при газовой сварке выше стоимости электроэнергии при дуговой и контактной сварке. Вследствие этого газовая сварка обходится дороже, чем электрическая.
Процесс газовой сварки труднее поддается механизации и автоматизации, чем процесс электрической сварки. Поэтому автоматическая газовая сварка многопламенными линейными горелками находит применении только при сварке обечаек и труб из тонкого металла продольными швами газовую сварку применяют при:

Изготовлении и ремонте изделий из тонко-листовой стали (сварке сосудов и резервуаров небольшой емкости, заварке трещин, варке заплат и пр.);
сварке трубопроводов малых и средних диаметров (до 100мм) и фасонных частей к ним;
ремонтной сварке литых изделий из чугуна, бронзы и силумина;
сварке изделий из алюминия и его сплавов, меди, латуни, свинца;
наплавке латуни на детали из стали и чугуна;
сварке кованого и высокопрочного чугуна с применением присадочных прутков из латуни и бронзы, низкотемпературной сварке чугуна.

При помощи газовой сварки можно сваривать почти все металлы, применяемые в технике. Такие металлы, как чугун, медь, латунь, свинец легче поддаются газовой сварке, чем дуговой. Если учесть еще простоту оборудования то становится понятным широкое распространение газовой сварки в некоторых областях народного хозяйства (на некоторых заводах машиностроения, сельском хозяйстве, ремонтных, строительно-монтажных работах и др.).

Для газовой сварки необходимо:

1) газы – кислород и горючий газ (ацетилен или его заменитель);
2) присадочная проволока (для сварки и наплавки);
3) соответствующее оборудование и аппаратура, в то числе:
а. кислородные баллоны для хранения запаса кислорода;
б. кислородные редукторы для понижения давления кислорода, подаваемого из баллонов в горелку или резак;
в. ацетиленовые генераторы для получения ацетилена из карбида кальция или ацетиленовые баллоны, в которых ацетилен находится под давлением и растворен в ацетилене;
г. сварочные, наплавочные, закалочные и другие горелки с набором наконечников для нагрева метла различной толщины;
д. резиновые рукава (шланги) для подачи кислорода и ацетилена в горелку;
4) принадлежности для сварки: очки с темными стеклами (светофильтрами) для защиты глаз от яркого света сварочного пламени, молоток, набора ключей для горелки, стальные щетки для очистки металла и сварочного шва;
5) Сварочный стол или приспособление для сборки и закрепления деталей при прихватке, сварки;
6) флюсы или сварочные порошки, если они требуются для сварки данного металла.

Материалы, применяемые при газовой сварке.

Кислород Кислород при атмосферном давлении и обычной температуре газ без цвета и запаха, несколько тяжелее воздуха. При атмосферном давлении и температуре 20 гр. масса 1м3 кислород равен 1.33 кг. Сгорание горючих газов и паров горючих жидкостей в чистом виде кислороде происходит очень энергично с большой скоростью, а возникновение в зоне горения возникает высокая температура.
Для получения сварочного пламени с высокой температурой, необходимо для быстрого расплавления металла в месте сварки, горючий газ или пары горючей жидкости сжигают в смеси с чистым кислородом.
При возникновении сжатого газообразного кислорода с маслом или жирами последние могут самовоспламеняться, что может быть причиной пожара. Поэтому при обращении с кислородными баллонами и аппаратурой необходима тщательно следить за тем, чтобы на них не падали даже незначительные следы масла и жиров. Смесь кислорода с горючих жидкостей при определенных соотношениях кислорода и горючего вещества взрывается.
Технический кислород добывают из атмосферного воздуха который подвергают обработке в воздухоразделительных установках, где он очищается от углекислоты и осушается от влаги.
Жидкий кислород хранят и перевозят в специальных сосудах с хорошей теплоизоляцией. Для сварки выпускают технический кислород трех сортов: высшего, чистотой не ниже 99.5%
1-ого сорта чистотой 99.2%
2-ого сорта чистотой 98.5% по объему.
Остаток 0.5-0.1% составляет азот и аргон
Ацетилен В качестве горючего газа для газовой сварки получил распространение ацетилен соединение кислорода с водородом. При нормальной to и давлением ацетилен находится в газообразном состоянии. Ацетилен бесцветный газ. В нем присутствуют примеси сероводорода и аммиак.
Ацетилен есть взрывоопасный газ. Чистый ацетилен способен взрываться при избыточном давлении свыше 1.5 кгс/см 2 , при быстром нагревании до 450-500С. Смесь ацетилена с воздухом взрываться при атмосферном давлении, если в смеси содержится от 2.2 до 93% ацетилена по объему. Ацетилен для промышленных целей получают разложением жидких горючих действием электродугового разряда, а так же разложением карбида кальция водой.
Газы заменители ацетилена. При сварке металлов можно применять другие газы и пары жидкостей. Для эффективного нагрева и расплавления металла при сварке необходимо чтобы to пламени была примерно в два раза превышала to плавления свариваемого металла.
Для сгорания горючих различных газов требуется различное кол-во кислорода подаваемого в горелку. В таб.8 приведены основные хар-ки горючих газов для сварки.
Газы заменители ацетилена применяют во многих отраслях промышленности. Поэтому их производство и добыча в больших масштабах и они являются очень дешевыми, в этом их основное преимущество перед ацетиленом.
Вследствие более низкой t пламени этих газов применение их ограничено некоторыми процессами нагрева и плавления металлов.
При сварке же стали с пропаном или метаном приходится применять сварочную проволоку содержащею повышенное количество кремния и марганца, используемых в качестве раскислителей, а при сварке чугуна и цветных металлов использовать флюсы.
Газы – заменители с низкой теплопроводной способностью неэкономично транспортировать в баллонах. Это ограничивает их применение для газопламенной обработки.

Таблица 8 Основные газы применяемые при газовой сварке

Сварочные проволоки и флюсы

В большинстве случаев при газовой сварке применяют присадочную проволоку близкую по своему хим. составу к свариваемому металлу.
Нельзя применят для сварки случайную проволоку неизвестной марки.
Поверхность проволоки должна быть гладкой и чистой без следов окалины, ржавчины, масла, краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже to плавления металла.
Проволока должна плавится спокойно и равномерно, без сильного разбрызгивания и вскипания, образуя при застывании плотный однородный металл без посторонних включений и прочих дефектов.
Для газовой сварки цветных металлов (меди, латуни, свинца), а так же нержавеющей стали в тех случаях, когда нет подходящей проволоки, применяют в виде исключения полоски нарезанный из листов той же марки, что и сваривает металл.
Флюсы Медь, алюминий, магний и их сплавы при нагревании в процессе сварки энергично вступают в реакцию с кислородом воздуха или сварочного пламени (при сварке окислительным пламенем), образуя окислы, которые имеют более высокую to плавления, чем металл. Окислы покрывают капли расплавленного металла тонкой пленкой и этим сильно затрудняют плавление частиц металла при сварке.
Для защиты расплавленного металла от окисления и удаления образующихся окислов применяют сварочные порошки или пасты, называемые флюсами. Флюсы, предварительно нанесенные на присадочную проволоку или пруток и кромки свариваемого металла, при нагревании расплавляются и образуют легкоплавкие шлаки, всплывающие на поверхность жидкого металла. Пленка шлаков прокрывает поверхность расплавленного металла, защищая его от окисления.
Состав флюсов выбирают в зависимости от вида и свойств свариваемого металла.
В качестве флюсов применяют прокаленную буру, борную кислоту. Применение флюсов необходимо при сварке чугуна и некоторых специальных легированных сталей, меди и ее сплавов. При сварке углеродистых сталей не применяют.

Аппаратура и оборудование для газовой сварки.

Водяные предохранительные затворы Водяные затворы защищают ацетиленовый генератор и трубопровод от обратного удар пламени из сварочной горелки и резака. Обратным ударом называется воспламенение ацетиленово-кислородной смеси в каналах горелки или резака. Водяной затвор обеспечивает безопасность работ при газовой сварке и резке и является главной частью газосварочного поста. Водяной затвор должен содержатся всегда в исправном состоянии, и быть наполнен водой до уровня контрольного крана. Водяной затвор всегда включает между горелкой или резаком и ацетиленовым генератором или газопроводом.


Рисунок 17 Схема устройства и работы водяного затвора среднего давления:
а - нормальная работа затвора, б - обратный удар пламени

Баллоны для сжатых газов

Баллоны для кислорода и других сжатых газов представляют собой стальные цилиндрические сосуды. В горловине баллона сделано отверстие с конусной резьбой, куда ввертывается запорный вентиль. Баллоны бесшовные для газов высоких давлений изготавливают из труб углеродистой и легированной стали. Баллоны окрашивают с наружи в словные цвета, в зависимости от рода газа. Например, кислородные баллоны в голубой цвет, ацетиленовые в белый водородные в желто-зеленый для прочих горючих газов в красный цвет.
Верхнею сферическую часть баллона не окрашивают и на ней выбивают паспортные данные баллона.
Баллон на сварочном посту устанавливают вертикально и закрепляют хомутом.

Вентили для баллонов

Вентили кислородных баллонов изготавливают из латуни. Сталь для деталей вентиля применять нельзя так как она сильно коррозирует в среде сжатого влажного кислорода.
Ацетиленовые вентили изготавливают из стали. Запрещается применять медь и сплавы, содержащие свыше 70% меди, так как с медью ацетилен может образовывать взрывчатое соединение – ацетиленовую медь.

Редукторы для сжатых газов

Редукторы служат для понижения давления газа, отбираемого из баллонов (или газопровода), и поддержания этого давления постоянным независимо от снижения давления газа в баллоне. Принцип действия и основные детали у всех редукторов примерно одинаковы.
По конструкции бывают редукторы однокамерные и двухкамерные. Двухкамерные редукторы имеют две камеры редуцирования, работающие последовательно, дают более постоянное рабочее давление и менее склонны к замерзанию при больших расходах газа.
Кислородный и ацетиленовый редукторы показаны на рис. 18.


Рисунок 18 Редукторы: а - кислородный, б - ацетиленовый

Рукава (шланги) служат для подвода газа в горелку. Они должны обладать достаточной прочностью, выдерживать давление газа, быть гибкими и не стеснять движений сварщика. Шланги изготовляют из вулканизированной резины с прокладками из ткани. Выпускаются рукава для ацетилена и кислорода. Для бензина и керосина применяют шланги из бензостойкой резины.

Сварочные горелки

Сварочная горелка служит основным инструментом при ручной газовой сварке. В горелке смешивают в нужных количествах кислород и ацетилен. Образующаяся горючая смесь вытекает из канала мундштука горелки с заданной скоростью и, сгорая, дает устойчивое сварочное пламя, которым расплавляют основной и присадочный металл в месте сварки. Горелка служит также для регулирования тепловой мощности пламени путем изменения расхода горючего газа и кислорода.
Горелки бывают инжекторные и безинжекторные. Служат для сварки, пайки, наплавки, подогрева стали, чугуна и цветных металлов. Наибольшее распространение получили горелки инжекторного типа. Горелка состоит из мундштука, соединительного ниппеля, трубки наконечника, смесительной камеры, накидной гайки, инжектора, корпуса, рукоятки, ниппеля для кислорода и ацетилена.
Горелки делятся по мощности пламени:

1. Микромалой мощности (лабораторные) Г-1;
2. Малой мощности Г-2. Расход ацетилена от 25 до 700 л. в час, кислорода от 35 до 900 л. в час. Комплектуются наконечниками №0 до 3;
3. Средней мощности Г-3. Расход ацетилена от 50 до 2500 л. в час, кислорода от 65 до 3000 л. в час. Наконечники №1-7;
4. Большой мощности Г-4.

Также есть горелки для газов заменителей ацетилена Г-3-2, Г-3-3. Комплектуются наконечниками с №1 по №7.

Технология газовой сварки.

Сварочное пламя. Внешний, вид температура и влияние сварочного пламени на расплавленный металл зависят от состава горючей смеси, т.е. соотношение в ней кислорода и ацетилена. Изменяя состав горючей смеси, сварщик изменяет свойства сварочного пламени. Изменяя соотношение кислорода и ацетилена в смеси, можно получать три основных вида сварочного пламени, рис. 19.


Рисунок 19 Виды ацетилено-кислородного пламени а – науглероживающее, б-нормальное, в – окислительное; 1 – ядро, 2- восстановительная зона, 3 - факел

Для сварки большинства металлов применяют нормальное (восстановительное) пламя (рис. 19, б). Окислительное пламя (рис. 19, в) применяют при сварке с целью повышения производительности процесса, но при этом обязательно пользоваться проволокой, содержащей повышенное количество марганца и кремния в качестве раскислителей, оно также необходимо при сварке латуни и пайке твердым припоем. Пламя с избытком ацетилена применяют при наплавке твердыми сплавами. Пламя с незначительным избытком ацетилена используют для сварки алюминиевых и магниевых сплавов.
Качество наплавленного металла и прочности сварного шва сильно зависят от состава сварочного пламени.
Металлургические процессы при газовой сварке. Металлургические процессы при газовой сварке характеризуются следующими особенностями: малым объемом ванны расплавленного металла; высокой температурой и концентрацией тепла в месте сварки; Большой скоростью расплавления и остывания метла; интенсивным перемешиванием металла гладкой ванны газовым потоком пламени и присадочной проволокой; химическим взаимодействием расплавленного металла с газами пламени.
Основными в сварочной ванне являются реакции окисления и восстановления. Наиболее легко окисляются магний, алюминий, обладающие большим сродством к кислороду.
Кислы этих металлов не восстанавливаются водородом и окисью углерода, поэтому при сварке металлов необходимы специальные флюсы. Окислы железа и никеля, наоборот хорошо восстанавливаются окисью углерода и водородом пламени, поэтому при газовой сварке этих металлов флюсы не нужны.
Водород способен хорошо растворятся в жидком железе. При быстром остывании сварочной ванны он может остаться в шве в виде мелких газовых пузырей. Однако газовая сварка обеспечивает более медленное охлаждение металла по сравнению, например с дуговой. Поэтому при газовой сварке углеродистой стали, весь водород успевает уйти из металла шва и последний получится плотным.
Структурные изменения в металле при газовой сварке. Вседствии более медленного нагрева зона влияния при газовой сварке больше чем при дуговой. Слои основного металла, непосредственно примыкающие к сварочной ванне непрерывны и приобретают крупнозернистую структуру. В непосредственной близости к границе шва находится зона неполного расплавления. Основного металла с крупной структурой, характерной для ненагретого металла. В этой зоне прочность металла ниже, чем прочночность металла шва, поэтому здесь обычно и происходит разрушение сварного соедениения.
Далее расположен участок, нерекристализации характеризуемы так же крупнозернистой структурой, для которого t плавления металла, не выше 1100-1200С. Последующие участки нагреваются до более низких температур и имеют мелкозернистую структуру, нормализованной стали.
Для улучшения структуры и свойств металла шва и околошовной зоны иногда применяют горячую проковку шва и местную термообработку нагревом сварочным пламенем или общую термообработку с нагревом в печи.
Элюстрация способов газовой сварки показана на рис. 20.




Рисунок 20

Особенности и режимы сварки различных металлов.

Сварка углеродистых сталей

Низкоуглеродистые стали можно сварить любым способом газовой сварки. Пламя горелки должно быть нормальным, мощностью 100-130дм 3/ч при правой сварке. При сварке углеродистых сталей применяют проволоку из малоуглеродистой стали св-8 св-10ГА. При сварке этой проволокой часть углерода, марганца и кремния выгорает, а металл шва получает крупнозернистую структуру и его предел прочности такового для основного металла. Для получения наплавленного металла равнопрочного основному, применяют проволоку св-12ГС, содержащую до 0.17% углерода; 0.8-1.1 марганца и 0.6-0.9% кремния.

Сварка легированных сталей

Легированные стали хуже проводят тепло чем низкоуглеродистая сталь, и поэтому больше коробятся при сварке.
Низколегированные стали (например XCHД) хорошо свариваются газовой сваркой. При сварке применяют нормальное пламя и проволоку СВ-0.8, СВ-08А или СВ-10Г2
Хромоникелевые нержавеющие стали сваривают нормальным пламенем мощностью 75 дм 3 ацетилена на 1 мм толщины металла. Применяют проволоку СВ-02Х10Н9, СВ-06-Х19Н9Т. При сварке жаропрочной нержавеющей стали, применяют проволоку содержащую 21% никеля 25% хрома. Для сварки коррозиностойкой стали содержащей молибден 3%, 11% никеля, 17% хрома.

Сварка чугуна

Чугун сваривают при исправлении дефектов отливок, а так же восстановлении и ремонте деталей: заварке трещин, раковин, при варке отколовшихся частей и пр.
Сварочное пламя должно быть нормальным или науглероживающим, так как окислительное вызывает местное выгорание кремния, и в металле шва образуются зерна белого чугуна.

Сварка меди

Медь обладает высокой теплопроводностью, поэтому при ее сварке к месту расплавления металла приходится проводить большое количество тепла, чем при сварке стали.
Одним из свойств меди затрудняющим сварку, является ее повышенная текучесть в расплавленном состоянии. Поэтому при сварке меди не оставляют зазора между кромками. В качестве присадочного металла используют проволоку из чистой меди. Для раскисления меди и удаления шлака применяют флюсы.

Сварка латуни и бронзы

Сварка латуни. Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испаряется до 25% содержащегося в латуни цинка.
Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%. В качестве присадочного металла используют латунную проволоку. В качестве флюсов применяют прокаленную буру или газообразный флюс БМ-1

Сварка бронзы

Газовую сварку бронзы применяют при ремонте литых изделий из бронзы, наплавке работающих на трение поверхностей деталей слоем антифрикционных бронзовых сплавов и пр.
Сварочное пламя должно иметь восстановительный характер, так как при окислительном пламени увеличиваются выгорание из бронзы олова, кремния, алюминия. В качестве присадочного материала используют прутки или проволоку, близкие по составу к свариваемому металлу. Для раскисления в присадочную проволоку вводят до 0.4% кремния.
Для защиты металла от окисления и удаления окислов в шлаки применяют флюсы тех же составов, что и при сварке меди и латуни.

Режим сварки -- совокупность параметров процесса, обусловливающих возможность сварки данного соединения из металла заданной марки и толщины в пространственных положениях, определяемых конструкцией изделия.

Основными параметрами газовой сварки являются вид и мощность пламени, диаметр присадочной проволоки и скорость сварки.

Вид пламени зависит от свариваемого материала: нормальным пламенем сваривают углеродистые и легированные стали, науглероживающим -- чугун и окислительным -- латуни. Выбор нужного вида пламени осуществляется по характеру его свечения.

Мощность пламени горелки, выбираемая в соответствии с толщиной свариваемого металла и его теплофизическими свойствами, определяется расходом ацетилена, необходимым для его расплавления. Чем толще свариваемый металл и выше его теплопроводность (как, например, у меди и ее сплавов), тем больше должна быть мощность пламени. Ее регулируют ступенчато -- подбором наконечника горелки и плавно -- вентилями

Для данного вида работ я выбираю инжекторную горелку малой мощности ГС-2, так как ее применяют для сварки металла малой толщины. Горелку выпускают в комплекте с четырьмя наконечниками (0,1,2,3). Она снабжена игольчатыми ацетиленовым и кислородным вентилями, которые обеспечивают точную регулировку газов.

Номер наконечника 2, так как горелкой с этим наконечником можно сваривать металл толщиной 1,0 -2,0 мм. Номер мундштука также 2, для данного наконечника подходит данный мундштук.

Рабочее давление кислорода должно быть 0,2 - 0,5МПа. Но если оно будет больше данного, то пламя будет жесткое и металл будет очень быстро расплавляться и прожигать дыры в металле, а если давление будет меньше данного, то пламя будет мягким, дольше будет нагреваться, будут частые хлопки и обратные удары. Рабочее давление ацетилена должно быть 1 -7кПа. Если оно будет меньшим, то будут частые хлопки и обратные удары, а если больше, то пламя будет жестким.

Диаметр шлангов выбирается в зависимости от вида горелки, так как у горелок разной мощности диаметры штуцеров и ввернутых в них ниппелей разные. Для данной горелки требуются шланги с внутренним диаметром 6,3 мм.

Для расплавления зазора между кромками свариваемого металла и образование валика шва в сварочную ванну вводят присадочную проволоку, того же состава, что и свариваемый металл. Нельзя сваривать металл проволокой неизвестной марки. Перед сваркой проволока должна быть очищена от влаги, грязи, ржавчины, масла, краски.

Выбор диаметра присадочной проволоки осуществляется в зависимости от толщины свариваемого металла и способа сварки. При сварке низко- и среднеуглеродистых сталей диаметр присадочной проволоки, мм, для левого способа сварки определяется по формуле:

а для правого --

где s -- толщина свариваемого металла, мм.

Скорость сварки устанавливается сварщиком в соответствии со скоростью плавления кромок детали.

Техника сварки

Техника сварки -- совокупность способов, приемов и манипуляций, осуществляемых сварщиком для формирования высококачественного шва.

При газовой сварке составными элементами техники сварки являются:

* угол наклона мундштука горелки к поверхности свариваемых кромок;

* способ сварки;

* манипуляции мундштуком горелки и присадочной проволокой при движении пламени вдоль шва.

Угол наклона мундштука горелки к поверхности свариваемых кромок выбирает сварщик в зависимости от толщины металла и его теплофизических свойств. Для низкоуглеродистых сталей такая взаимосвязь может быть представлена в следующем виде:

Таблица 1.

Зависимость угла наклона мундштука горелки от толщины металла

Горелка в руке сварщика может перемещаться только в двух направлениях:

* справа налево, когда пламя направлено на холодные, еще не сваренные кромки металла, а присадочная проволока подается впереди пламени. Такой способ получил название левого;

* слева направо, когда пламя направлено на сваренный участок шва, а присадочная проволока подается вслед за пламенем.

Такой способ называется правым.

Левый способ применяют при сварке тонкостенных (толщиной до 3 мм) конструкций и легкоплавких металлов и сплавов.

Правый способ используют для сварки конструкций с толщиной стенки свыше 3 мм и металлов с большой теплопроводностью.

Качество шва при правом способе сварки выше, чем при левом, так как металл лучше защищен пламенем горелки от воздействия воздуха.

Перед зажиганием горелки необходимо проверить ее на инжекцию. Процесс проверки горелки на инжекцию включает в себя: первоначально нужно снять ацетиленовый шланг с горелки, затем открывать вентиль кислорода, кислород идет через центральное отверстие инжектора и ускоряется, тем самым создает вакуум в боковых каналах инжектора и за счет этого подсасывается из этих каналов ацетилен. После того, как вентиль кислорода открыт, мы подставляем палец к штуцеру горелки и если палец присасывается, то это значит, что горелка работает и можно производить сварку.

Горелку следует зажигать в следующем порядке. Сначала, на пол оборота открывают кислород, а затем ацетилен, но ни в коем случае не наоборот, так как пламя будет коптить и не полностью сгорать ацетилен.

Для сварки различных металлов и сплавов, требуется определённый вид пламени. Для сварки низкоуглеродистой стали, вид пламени должен быть нормальным. Нормальное пламя, это где на 1 объём ацетилена поступает 1,1 - 1,3 объёма кислорода. Ядро нормального пламени имеет цилиндрическую форму. В восстановительной зоне отсутствует свободный кислород и углерод.

Угол наклона мундштука и поверхности свариваемого металла равен примерно 30°. Это делается для того, чтобы металл не прогорал.

Низкоуглеродистые стали содержат до 0,25 % углерода.

Т р у д н о с т и п р и с в ар к е. Особых затруднений сварка не вызывает. Сталь обладает хорошей свариваемостью в широком диапазоне значений тепловой мощности пламени.

Х а р а к т е р и с т и к а п л а м е н и. Вид пламени -- нормальное. Его тепловую мощность при левом способе сварки выбирают исходя из расхода ацетилена 100... 130 дм3/ч на 1 мм толщины свариваемого металла, а при правом способе -- 120... 150 дм3/ч.

Т е х н о л о г и ч е с к и е о с о б е н н о с т и. Сварку проводят без флюса с использованием в качестве присадочного материала сварочной проволоки следующих марок:

* Св-08 и -08А -- для неответственных конструкций;

* Св-08Г, -08ГА, -10ГА и -14ГС -- для ответственных конструкций.

Т е х н и к а с в а р к и. Сварку выполняют как левым, так и правым способами.

Д о п о л н и т е л ь н ы е м е р ы. Для уплотнения и повышения пластичности наплавленного металла после сварки применяют проковку и последующую термообработку шва. Проковку рекомендуется осуществлять при температуре светло-красного каления (800...850 °С) и заканчивать при температуре темно-красного каления.

Термической обработке после сварки подлежат ответственные и толстостенные конструкции.

Для сварки низкоуглеродистой стали толщиной 1,5 мм необходимо настроить нормальное пламя, мощность пламени исходя из расхода ацетилена 150… 200 м3/ч для левого способа сварки, диаметр присадочной проволоки - 1,7 мм.

Швы длиной 800 мм сваривают обратноступенчатым способом сварки. Для этого шов разбивают на участки 100-200 мм, так как при газовой сварке больше деформации, предварительно выполняют прихватки, длина прихваток около 10 мм, а расстояние между ними около 80 мм. Сварку ведут согласно схеме участками 1, 2, 3 в одном направлении, а шов увеличивается, растет в обратном направлении. Все это делается для того, чтобы равномернее прогреть шов по всей длине и уменьшить деформацию при сварке.

Так как толщина свариваемого металла 1,5 мм, выполняется однослойный шов. Зазор между двумя листами должен быть минимальный, во избежание прожогов.

При этом способе сварщик хорошо видит свариваемый шов, поэтому внешний вид шва лучше, чем при правом способе.

Качественный сварной шов обеспечивается правильным подбором тепловой мощности сварочного пламени, видом пламени, способом сварки, углом наклона горелки, применением соответствующего при- садочного материала и флюса.

Тепловая мощность сварочного пламени оценивается по расходу ацетилена (л/ч) и определяется по формуле

где А – коэффициент тепловой мощности (для малоуглеродистой стали

А = 100…130 л/ч⋅мм);

S– толщина свариваемого металла, мм.

По мощности пламени определяют номер наконечника горелки.

При использовании газовой сварки для изготовления металлических изделий предпочтительным типом соединения является стыковое. Соединение внахлест и тавровое соединения, вследствие возникновения в изделии значительных собственных напряжений, нежелательны, а при сварке изделий большой толщины недопустимы.

Сварка сталей толщиной до 2 мм осуществляется без скоса кромок и без зазора между листами или с отбортовкой кромок без присадочного металла. При толщине листа 2…5 мм соединение встык выполняют без скоса кромок, но с соответствующим зазором. Сталь толщиной более 5 мм сваривают только встык с применением одностороннего или двухстороннего скоса кромок.

При толщине металла более 5 мм применяют правый способ сварки, при

котором горелка движется впереди сварочной проволоки слева направо (рисунок 4 а). Пламя направлено на наплавленный металл, что способствует более качественному формированию шва, увеличивает производительность, уменьшает расход ацетилена, но при малых толщинах может привести к прожогу металла.

При толщине металла до 5 мм применяют левый способ сварки

(рисунок 4 б), при котором горелка движется справа налево. Присадочный пруток находится слева от горелки и передвигается впереди пламени, направленного от наплавленного металла в сторону основного металла, на нагрев которого расходуется значительная часть тепла, в результате чего наплавленный металл быстро охлаждается.

а – правый; б – левый

Рисунок 4 - Способы газовой сварки

Угол наклона горелки к свариваемой поверхности зависит от толщины

металла. При её увеличении нужна большая концентрация тепла и соответственно большой угол наклона горелки (рисунок 5).

Рисунок 5 - Изменение угла наклона горелки в зависимости от толщины свариваемого металла

Диаметр присадочной проволоки d (мм) определяют в зависимости от выбранного способа сварки и толщины свариваемого металла S (мм) по следующим формулам:

d = S / 2 + 1 – при левом способе;

d = S / 2 – при правом способе.

После расчета выбирается ближайшее значение, из следующего ряда

стандартных диаметров: 0,3; 0,5; 0,8; 1,0; 1,2; 1,4; 1,6; 2,0; 2,5; 3,0; 4,0;



5,0; 6,0; 8,0; 10 и 12. При сварке изделия толщиной более 15 мм диаметр проволоки принимают не более 6…8 мм.

В качестве присадочного материала следует применять проволоку

или прутки, близкие по химическому составу к металлу свариваемых изделий. Для сварки чугуна применяют специальные литые чугунные стержни; для наплавки износостойких покрытий – литые стержни из твердых сплавов. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы, которые могут быть в виде порошков и паст; для сварки меди и её сплавов – кислые флюсы (буру, буру с борной кислотой); для сварки алюминиевых сплавов – бескислородные флюсы на основе фтористых, хлористых солей лития, калия, натрия и кальция.

Роль флюса состоит в растворении оксидов и образовании шлаков, легко всплывающих на поверхность сварочной ванны, а также предохранении расплавленного металла от дальнейшего окисления в процессе сварки, покрывая его тонкой пленкой. Во флюсы можно вводить элементы, раскисляющие и легирующие наплавленный металл.

Скорость сварки V (м/ч) определяется глубинной проплавления и зависит от свойств металла:

где С – коэффициент скорости сварки, м ⋅ мм/ч (для углеродистых ста-

лей С = 12…15);

S– толщина металла, мм.

Время сварки t (ч) : t = L / V,

где L – длина шва, м.

Полный расход горючего газа Q (л) :

где q– тепловая мощность сварочного пламени, л/ч.

Угол наклона мундштука горелки к поверхности металла зависит в основном от толщины свариваемых листов и от теплофизических свойств металла. Чем больше толщина металла, тем больше угол наклона мундштука горелки. С изменением толщины стали от 1 до 15 мм угол наклона мундштука меняется в пределах 10-80° (рис. 3). Угол наклона мундштука горелки зависит также от температуры плавления и теплопроводности металла. Чем выше температура плавления металла и чем больше его теплопроводность, тем больше угол наклона мундштука. Так, например, при сварке меди угол наклона мундштука может составлять 60-80°, а при сварке свинца или легко воспламеняющегося магниевого сплава ~ 10°. Наклон мундштука горелки может меняться в процессе сварки. В начальный момент сварки и для лучшего прогрева металла и быстрого образования сварочной ванны угол наклона устанавливают наибольшим (80-90°); в процессе сварки величина угла соответствует толщине и роду свариваемого металла.

Рис. 3.

Мощность пламени зависит от толщины металла и его теплофизических свойств. Чем больше толщина металла и чем выше его температура плавления и теплопроводность, тем большую мощность пламени необходимо выбирать для его сварки. При сварке низкоуглеродистых и низколегированных сталей расход ацетилена устанавливают по формулам:

при правом способе сварки

где д - толщина свариваемой стали, мм.

При сварке чугуна, латуни, бронзы и алюминиевых сплавов мощность пламени устанавливается примерно такая же, как и для сварки стали.

При сварке же меди, обладающей весьма высокой теплопроводностью и достаточно высокой температурой плавления, мощность пламени, если процесс сварки ведут одной горелкой, подбирают по формуле

В процессе газовой сварки происходит нагрев мундштука горелки и, как следствие, увеличивается содержание кислорода в газовой смеси, что приводит часто к окислению металла сварочной ванны. Поэтому в начальный момент работы необходимое соотношение газов в смеси устанавливают при в0=1,05ч1,1. По мере нагревания мундштука горелки количество кислорода постепенно увеличивается до в0=1,2ч1,3, после чего сварщик охлаждает горелку и вновь регулирует пламя.

Диаметр присадочной проволоки зависит от способа газовой сварки. Для левого способа он составляет большую величину, чем для правого. Диаметр присадочной проволоки d для сварки стали толщиной 6 до 15 мм может быть определен по следующим формулам:

для левого способа

для правого способа

При сварке стали толщиной более 15 мм диаметр проволоки выбирают равным 6-8 мм. Движения горелкой и присадочной проволокой оказывают значительное влияние на процесс формирования сварного шва. При сварке в нижнем положении правым способом без разделки кромок при толщине стали более 3 мм или при сварке стали относительно большой толщины левым способом (с разделкой кромок или без нее) наиболее распространенные движения горелкой и концом присадочной проволоки показаны на рис. 4. В этом случае концом присадочной проволоки совершают движения, обратные движениям сварочной горелки. При выполнении угловых или валиковых швов для получения нормальной формы валика горелке и присадочной проволоке придают движения, показанные на рис. 5. В этом случае сварщик быстро перемещает пламя и конец проволоки посредине шва и задерживает их по краям.

Рис. 4.

Рис. 5.

При сварке правым способом металла толщиной 5 мм пламя горелки углубляется в разделку шва (рис. 6) и перемещается вдоль шва без колебательных движений.

Рис. 6.

При сварке стали малой толщины без отбортовки кромок, когда процесс сварки ведется с присадочной проволокой, получил распространение способ последовательного образования сварочных ванночек (рис. 7). При этом каждая последующая ванночка перекрывает предыдущую на 1/3 ее диаметра.

Рис. 7.

В этом случае процесс сварки ведут левым способом. Для получения гладкой и ровной поверхности шва требуется соблюдение двух основных условий: конец присадочной проволоки во избежание окисления не следует выводить за пределы средней зоны пламени; ядро пламени при приближении его к сварочной ванне для предотвращения науглероживания металла шва не должно касаться ее поверхности. Способ последовательного образования сварочных ванночек, или, как его иногда называют, «сварка каплями», позволяет получать весьма высокое качество сварного шва.

ОТВЕТ

Режимы газовой сварки

Режимы газовой сварки определяют:мощностью сварочного пламени
углом наклона присадочного материала и мундштука горелки
диаметром присадочного материала
скоростью сварки.Сварочное пламя должно обладать достаточной тепловой мощностью, которую выбирают в зависимости от толщины свариваемого металла и его физических свойств. Выбор режимов сварки целиком и полностью зависит от толщины свариваемых деталей

Способы газовой сварки

Способов наложения сварочного шва существует несколько. Их применение диктуется привычками сварщика и особенностями сварного соединения.

Левая сварка (рис. 2А) - является наиболее применяемым способом при газовой сварке металлов, толщиной 4-5 мм. При этом способе горелку перемещают справа налево, а присадочную проволоку перемещают впереди горелки. Сварочное пламя, направленное от шва, хорошо прогревает несваренный участок и присадочную проволоку. При малой толщине металла (менее 8 мм) горелку, перемещают только вдоль шва, а при толщине металла больше 8 мм выполняют дополнительные колебательные движения поперек оси шва. Присадочную проволоку концом погружают сварочную ванну, перемешивая ее спирал образными движениями.

Левый способ хорош тем, что сварщик хорошо видит шов, что дает ему возможность обеспечить равномерность сварочного валика. Шов получает ровный и красивый. Мощность сварочного пламени: при левом способе сварки принимают в пределах 100 - 130 дм3 ацетилена в час на один мм толщи металла.

Правая сварка (рис. 2Б) считается более экономичной, так как пламя направлено непосредственно на шов. Это дает возможность сваривать металл большой толщины с уменьшенным углом раскрытия кромок. А так как при этом количество наплавленного металла снижается, то вероятность коробления деталей снижается. Горелка при этом способе перемещается слева направо, а присадочный материал передвигают вслед за горелкой. Так как пламя направлено на шов, то скорость его охлаждения снижается, металл одновременно подвергается термической обработке, что способствует повышению качества шва.

Врпрос №2 Устройство и принцып работы сварочного агрегата

Сварочные агрегаты представляют собой автономные источники питания сварочной дуги, в состав которых входят генератор постоянного тока и приводной бензиновый или дизельный двигатель (иногда электрический). Генератор и двигатель смонтированы на общей раме и соединены муфтой. Имеются также реостат для регулирования сварочного тока, аккумуляторные батареи, топливный бак, пульт управления, капот с кровлей и шторками.

Можно выделить следующие видысварочных агрегатов :

o по типу генератора - с коллекторным или вентильным генератором;

o по виду привода - с бензиновым, дизельным или электрическим двигателем;

o по способу установки - передвижные или стационарные.

Агрегаты с бензиновыми двигателями дешевле по стоимости, но для них нужно более дорогое топливо. Агрегаты с дизельным двигателем имеют более высокую стоимость, но работают на более дешевом топливе, проще в эксплуатации и надежнее в работе при низкой температуре

Вопрос №3 Химикотермическая оброботка металлов

Ответ

Химико-термическая обработка (ХТО) - нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твердых, жидких, газообразных).В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют, насыщающими элементами или компонентами насыщения.В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя

В зависимости от насыщающего элемента различают следующие процессы химико-термической обработки:

· однокомпонентные : цементация - насыщение углеродом; азотирование - насыщение азотом; алитирование - насыщение алюминием; хромирование - насыщение хромом; борирование - насыщение бором; силицирование - насыщение кремнием;

· многокомпонентные :нитроцементация (цианирование,карбонитрация) - насыщение азотом и углеродом; боро- и хромоалитирование - насыщение, бором или хромом и алюминием, соответственно; хромосилицирование – насыщение хромом и кремнием и