Максимальная энергия магнитного поля формула. Энергия магнитного поля. Магнитное поле обладает энергией. Работа электрического поля по перемещению заряда


Индуктивность контура.

Рассмотрим замкнутый контур, по которому течёт ток . Он создает магнитное поле. Его величина пропорциональна току.

где - индуктивность контура. Единица измерения индуктивности - генри

Связь с другими единицами . Если в контуре изменяется ток, то изменится магнитное поле, создаваемое током. Следовательно, изменится магнитный поток, сцепленный с контуром. Согласно закону Фарадея, в контуре возникнет индуцированная ЭДС. Возникновение в контуре ЭДС при изменении в нем силы тока называется самоиндукцией . Для примера найдем индуктивность соленоида. Мы нашли, что магнитный поток сквозь соленоид (потокосцепление) равен

(2)

Сравнивая Ур. (1) и (2) находим

.

В общем случае индуктивность контура зависит от его формы, размеров и магнитной проницаемости среды, в которой находится контур. Существует аналогия между индуктивностью (связывает ток и магнитный поток) и емкостью (связывает заряд и напряженность электрического поля).

Взаимная индукция.

Рассмотрим два неподвижных контура, расположенных близко друг к другу. По контуру 1 течет ток . Он создает магнитное поле , которое пронизывает контур 2. Магнитный поток через контур 2, который пропорционален току :

(1)
- коэффициент пропорциональности. Когда изменяется ток , изменяется магнитное поле и магнитный поток . Это ведет к появлению ЭДС во втором контуре.

.

По аналогии рассматривается случай, когда ток течет по второму контуру. Он создает магнитный поток, который пронизывает контур 1.

При изменении тока в контуре 1 индуцируется ЭДС

Опыт показывает, что . Явление возникновения ЭДС индукции в одном из контуров, когда в другом изменяется сила тока, называется взаимной индукцией . - взаимная индуктивность контуров. Она зависит от формы, размеров и расположения контуров, а также от - магнитной проницаемости среды.

Энергия магнитного поля.

Ранее нашли, что элементарная работа при перемещении проводника с током в магнитном поле равна: . Это выражение применим к контуру с током . Ток создает магнитное поле, оно пронизывает контур. Магнитный поток, сцепленный с контуром, . При изменении тока в контуре, изменяется и магнитный поток - . При этом совершается элементарная работа . Работа по созданию магнитного потока

.

Это есть энергия магнитного поля, связанного с контуром.

Рассмотрим соленоид. Используя выражение для индуктивности соленоида, выражая ток через индукцию магнитного поля и учитывая связь , можно получить выражение для полной энергии магнитного поля соленоида.

.

Объем соленоида. При этом учли, что магнитное поле внутри соленоида однородное. Тогда энергия магнитного поля единицы объема или плотность энергии магнитного поля равна:

.

Трансформатор

Явление взаимной индукции лежит в основе работы трансформаторов. Это приборы, предназначенные для понижения или повышения напряжения в сети. Схема прибора

Имеется две катушки, соединенные между собой магнитопроводом или общим сердечником. Число витков в первой и второй катушках равно и , соответственно. По одной из катушек пропускается переменный электрический ток. Этот ток создает магнитное поле, которое почти полностью сосредоточено в сердечнике. Оно пронизывает витки обмотки второй катушки. Если к обмотке катушки 1 подключен источник с ЭДС , тогда ток в обмотке определяется согласно закону Ома с учетом ЭДС самоиндукции

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

где R является собственным сопротивлением обмотки.

Катушка индуктивности. Формула индуктивности

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2)
  • l = длина катушки в метрах (м)

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют , являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

Магни́тное по́ле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле может создаваться током заряженных частиц, либомагнитными моментами электронов в атомах (постоянные магниты). Можно также рассматривать магнитное поле как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитные волны. Электромагни́тное по́ле - фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представимое как совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

43. Если неподвижные заряды возбуждают электростатическое поле, то возникает силовое поле, которое действует на движущиеся заряды.

Всякое переменное магнитное поле возбуждает в окружающем простран­стве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. по Максвеллу, изменяющееся во времени магнитное поле порождает элект­рическое поле Е B , циркуляция которого, по

где Е Bl - проекция вектора Е B на направление dl .

Подставив в формулу выражение , получим

циркуляция вектора напряженности электростатического поля (обозначим его E Q) вдоль любого замкнутого контура равна нулю:

44. Видно, что между рассматриваемыми полями (E B и Е Q ) имеется принципиальное различие: циркуляция вектора E B в отличие от циркуляции вектора E Q не равна нулю. Следовательно, электрическое поле E B , возбуж­даемое магнитным полем, как и само магнитное поле, является вихревым .



Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружа­ющем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для рассмотрения этого вопроса Максвелл ввёл понятие ток смещения.

По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обклад­ками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I ) и смещения (I см) равны: I см =I.

Ток проводимости вблизи обкладок конденсатора

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе). для общего случая можно записать

Сравнивая это выражение с , имеем

было названо Максвеллом плотностью тока смещения .

Рассмотрим случай, о котором мы уже говорили (рис. 5.6).

Сначала замкнем соленоид L на источник ЭДС , в нем будет протекать ток . Затем в момент времени переключим ключ в положение 2 – замкнем соленоид на сопротивление R . В цепи будет течь убывающий ток I . При этом будет совершена работа: , или

Выразим энергию магнитного поля через параметры магнитного поля. Для соленоида:

.

; отсюда

Подставим эти значения в формулу (5.5.3):

но т.к. , то

Энергия однородного магнитного поля в длинном соленоиде может быть рассчитана по формуле

Плотность энергии магнитного поля в соленоиде с сердечником будет складываться из энергии поля в вакууме и в магнетике сердечника:

, отсюда .

Т.к. в вакууме , имеем

Контрольные вопросы

1. Какие опыты Фарадея легли в основу открытия явления электромагнитной индукции?

2. Что является причиной возникновения ЭДС индукции в замкнутом проводящем контуре? От чего и как зависит ЭДС индукции, возникающая в контуре?

3. В чем заключается явление электромагнитной индукции?

4. Почему для обнаружения индукционного тока лучше использовать замкнутый проводник в виде катушки, а не в виде одного витка провода?

5. Сформулируйте правило Ленца, проиллюстрировав его примерами.

6. Как направлен индукционный ток?

7. Всегда ли при изменении магнитной индукции в проводящем контуре в нем возникает ЭДС индукции? индукционный ток?

8. Чему равна ЭДС индукции контура?

9. Сформулируйте закон Ома для контура.

10. Как связано направление индукционного тока и направление скорости изменения потока магнитной индукции?

11. Сформулируйте закон Фарадея для контура с током, состоящего из одного и нескольких витков.

12. Возникает ли индукционный ток в проводящей рамке, поступательно движущейся в однородном магнитном поле?

13. Покажите, что закон Фарадея есть следствие закона сохранения энергии.

14. Какова природа ЭДС электромагнитной индукции?

15. Выведите выражение для ЭДС индукции в плоской рамке, равномерно вращающейся в однородном магнитном поле. За счет чего ее можно увеличить?

16. Что такое вихревые токи? Вредны они или полезны?

17. Почему сердечники трансформаторов не делают сплошными?

18. Какое явление называется скин-эффектом?

19. Произведите классификацию ускорителей.

20. Каковы параметры линейных ускорителей.

21. Когда заряженная частица движется в магнитном поле по спирали? От чего зависит шаг спирали? Ответы подтвердите выводами формул.

22. Что такое ускорители заряженных частиц? Какие они бывают и чем характеризуются?

23. Почему для ускорения электронов не применяются циклотроны?

24. В чем заключается принцип автофазировки? Где он используется?

25. Когда ЭДС самоиндукции больше – при замыкании или размыкании цепи постоянного тока?

26. В чем заключается физический смысл индуктивности контура? взаимной индуктивности двух контуров? От чего они зависят?

27. В чем заключаются явления самоиндукции и взаимной индукции? Вычислите ЭДС индукции для обоих случаев.

28. В чем заключается физический смысл времени релаксации ? Докажите, что имеет размерность времени.

29. Запишите и проанализируйте выражения для объемной плотности энергии электростатического и магнитного полей. Чему равна объемная плотность энергии электромагнитного поля?

30. Напряженность магнитного поля возросла в два раза. Как изменилась объемная плотность энергии магнитного поля?

31. Приведите соотношение между точками в первичной и вторичной обмотках повышающего трансформатора.

В таблице 5.1 приведены сравнительные характеристики электрического и магнитного полей.

Таблица 5.1

Электрическое поле

Формулы и обозначения

Магнитное поле

Формулы и обозначения

Точечный заряд

Электрическая

постоянная

Магнитная постоянная

Диэлектрическая

проницаемость

Магнитная проницаемость

Диэлектрическая восприимчивость

Магнитная восприимчивость

Взаимодействие точечных зарядов

Взаимодействие токов

Силовая характеристика электрич. поля

Магнитная энергия катушки.

При размыкании ключа K лампа ярко вспыхивает

Что собой представляет энергия катушки с током? В начальный момент времени по катушке идет ток , который создает магнитное поле. Исчезновение тока в катушке означает исчезновение магнитного поля. Значит, энергия катушки с током – это энергия её магнитного поля, она может быть найдена как работа убывающего тока


(8)

Для катушки
,
,


,

Объемная плотность энергии

, . (9)

Суммарная плотность энергии электрического и магнитного (электромагнитного) поля

(10)

Глава 1. Электродинамика Магнитное поле

1.21. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I :

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l . Магнитное поле соленоида определяется формулой (см. § 1.17 )

Следовательно, индуктивность соленоида равна

L = μ 0 n 2 Sl = μ 0 n 2 V ,

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17 ); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I 2 R Δt .

Ток в цепи равен

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I 0 до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I 0 до 0. Это дает

Таким образом, энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , равна

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии . Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.